Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition

نویسندگان

  • Peng Peng
  • Xinzhong Li
  • Jiangong Li
  • Yanqing Su
  • Jingjie Guo
  • Hengzhi Fu
چکیده

In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendr...

متن کامل

Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys

Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermor...

متن کامل

Effects of growth rate on the physical and mechanical properties of Sn-3.7Ag-0.9Zn eutectic alloy

Sn-3.7wt.%Ag-0.9wt.%Zn alloy was directionally solidified upward under different conditions, with different growth rates (V = 3.38 220.12 μm/s) at a constant temperature gradient (G = 4.33 K/mm) and with different temperature gradients (G = 4.33 -12.41 K/mm) at a constant growth rate (V = 11.52 μm/s) by using a Bridgman-type directional solidification furnace. The microstructure was observed to...

متن کامل

Upward and downward unsteady-state directional solidification of a hypoeutectic Al-3wt.%Mg alloy

Solidification thermal parameters, such as growth rate, cooling rate and dendrite arm spacing ( ), have been measured in a hypoeutectic Al-Mg alloy directionally solidified under upward and downward transient heat flow conditions. The experimental setup used in this work consists of a water-cooled mould with heat being extracted from the bottom or the top, promoting upward and downward directio...

متن کامل

Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni-Zr alloy levitated by electromagnetic field

The Ni83.25Zr16.75 peritectic alloy was undercooled by electromagnetic levitation method up to 198 K. The measured dendritic growth velocity shows a steep acceleration at a critical undercooling of ΔTcrit = 124 K, which provides an evidence of the transition of the primary growth mode from Ni7Zr2 phase to peritectic phase Ni5Zr. This is ascertained by combining the temperature-time profile and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016